Part A: Into to Acids and Bases

1) Match the following acid-base definitions with their correct name:

Name	Definition
- Arrhenius acid	• A substance that produces OH^{-}ions in aqueous
solution	
- Arrhenius base	
	- A proton $\left(\mathrm{H}^{+}\right.$ion $)$acceptor
- Brønsted-Lowery acid	- A substance the produces H^{+}ions in aqueous
	solution
- Brønsted-Lowery base	- A proton $\left(\mathrm{H}^{+}\right)$donor

2) Identify which are strong acids and which are weak acids. Hint if you know the 6 strong acids (in addition to HClO_{3}) from your text book then you can identify those that are weak.

List as SA or WA

- HCN
- $\mathrm{H}_{2} \mathrm{SO}_{4}$
- HClO
- HNO_{2}
- HCHO_{2}
- $\mathrm{H}_{3} \mathrm{PO}_{4}$
- HClO_{4}
- $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$

What does acid strength have to do with the bonding?
\qquad
\qquad

And which of the above are polyprotic?
3) Consider the ionization reaction between a weak acid and water shown below. Identify the conjugate acid and base.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{HNO}_{2}(\mathrm{aq}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq})
$$

Part B: Acid ionization constant, $\boldsymbol{K}_{\mathbf{a}}$
4) Complete the weak acid table below by filling in each row with any m issing formulas, ionization reactions, or acid ionization constants, K_{a}.

Formula	Ionization reaction	$\mathbf{K}_{\mathbf{a}}$ expression	$\mathbf{p K}_{\mathbf{a}}$
		$\frac{\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}{ }^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}$	3.34
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$			4.74
	$\mathrm{HClO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq})$		7.54

All of the above are weak acids, assuming 1.0 M solutions of all, use the pK_{a} values to identify the weakest of the series.

Part C: pH and pOH

5) Answer the following questions concerning a solution that has an $\left[\mathrm{OH}^{-}\right]=2.5 \times 10^{-9} \mathrm{M}$. (Be sure your answers have correct significant figures.)

a) What is the pOH of the solution?	c) What is the pH of the solution?
b) What is the $\left[\mathrm{OH}^{\prime}\right]$ of the solution?	d) What is the $\left[\mathrm{H}_{3} \mathrm{O}^{\circ}\right]$ of the solution?

Part D: pH of Strong Acid and Weak Acid Solutions

6) What is the pH of a 0.55 M nitric acid solution solution? (Be sure your answers have correct significant figures.)
7) What is the pH of a 0.55 M hypochlorous solution. (Be sure your answers have correct significant figures.)
8) What is the Ka for the unknown monoprotic acid, HA , if the pH of the solution is 4.50 ?
