_

Name:_____

Part A: Into to Acids and Bases

1) Match the following acid-base definitions with their correct name:

Name	Definition	
Arrhenius acid	 A substance that produces OH⁻ ions in aqueous solution 	
Arrhenius base	 A proton (H⁺ ion) acceptor 	
Brønsted-Lowery acid	 A substance the produces H⁺ ions in aqueous solution 	
Brønsted-Lowery base	 A proton (H⁺) donor 	

2) Identify which are strong acids and which are weak acids. Hint if you know the 6 strong acids (in addition to HCIO₃) from your text book then you can identify those that are weak.

List as SA or WA		
• HCN	• H ₂ SO ₄	
• HCIO	• HNO ₂	
• HCHO ₂	• H ₃ PO ₄	
• HCIO ₄	• HC ₇ H ₅ O ₂	
-		

What does acid strength have to do with the bonding?

And which of the above are polyprotic?

3) Consider the ionization reaction between a weak acid and water shown below. Identify the conjugate acid and base.

 $H_2O(I) + HNO_2(aq) \leftrightarrow H_3O^+(aq) + NO_2^-(aq)$

Part B: Acid ionization constant, Ka

4) Complete the weak acid table below by filling in each row with any m issing formulas, ionization reactions, or acid ionization constants, K_a .

Formula	Ionization reaction	K _a expression	рК _а
		$K_{a} = [H_{3}O^{+}][NO_{2}^{-}]$ [HNO ₂]	3.34
HC ₂ H ₃ O ₂			4.74
	HClO(aq) + H₂O(l) ↔ H₃O⁺(aq) + ClO⁻(aq)		7.54

All of the above are weak acids, assuming 1.0M solutions of all, use the \mathbf{pK}_a values to identify the weakest of the series.

Part C: pH and pOH

5) Answer the following questions concerning a solution that has an $[OH^-] = 2.5 \times 10^{-9} \text{ M}$. (Be sure your answers have correct significant figures.)

a) What is the pOH of the solution?	c) What is the pH of the solution?
b) What is the [OH] of the solution?	d) What is the [H ₃ O [*]] of the solution?

Part D: pH of Strong Acid and Weak Acid Solutions

6) What is the pH of a 0.55 M nitric acid solution solution? (Be sure your answers have correct significant figures.)

7) What is the pH of a 0.55 M hypochlorous solution. (Be sure your answers have correct significant figures.)

8) What is the Ka for the unknown monoprotic acid, HA, if the pH of the solution is 4.50?